4.8 Article

Hybrid Multilevel Converter With Cascaded H-bridge Cells for HVDC Applications: Operating Principle and Scalability

期刊

IEEE TRANSACTIONS ON POWER ELECTRONICS
卷 30, 期 1, 页码 65-77

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TPEL.2014.2303111

关键词

DC fault reverse blocking capability; half and full-bridge modular multilevel converters; hybrid multilevel converters; voltage source converter-based high-voltage direct current transmission systems

向作者/读者索取更多资源

Hybrid multilevel converters are contemplated in an attempt to optimize the performance of voltage source converters in terms of magnitude of semiconductor losses and converter footprint, and to achieve additional features such as dc short circuit proof, which is essential for a high integrity multiterminal HVDC grid. Therefore, this paper considers an emerging hybrid cascaded converter that offers the dc side short circuit proof feature at reduced loss and footprint compared to the existing multilevel and other hybrid converters. Its operating principle, modulation, and capacitor voltage balancing strategies are described in detail. Furthermore, hybrid converter scalability to high voltage applications is investigated. The validity of the modulation and capacitor voltage strategy presented are confirmed using simulation and experimentation. The hybrid cascaded converter is extendable to a large number of cells, making it applicable to high voltage applications, and operation is independent of modulation index and power factor. On these ground, the converter is expected to be applicable for both real and reactive power applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据