4.8 Article

Gyrator-Based Analysis of Resonant Circuits in Inductive Power Transfer Systems

期刊

IEEE TRANSACTIONS ON POWER ELECTRONICS
卷 31, 期 10, 页码 6824-6843

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TPEL.2015.2506737

关键词

Compensation circuit; gyrator; inductive power transfer system (IPTS); transformer; unity power factor

资金

  1. National Research Foundation of Korea (NRF) - Korea Government (MEST) [2010-0029179]

向作者/读者索取更多资源

In this paper, first, it is found that not only the magnetically coupled inductors but also all inductive power transfer systems (IPTSs) inherently have the nature of a gyrator. Widely known characteristics of IPTSs such as impedance inversion and source-type conversion are proved to be the nature of the gyrator. A graphical approach that utilizes the gyrator is proposed for the modeling of IPTSs in general. The proposed graphical technique enables manipulations on the circuit diagram instead of on the circuit equations, which are difficult to handle when the system order is higher than 4. Hence, the equivalent model can be obtained almost by inspection conveniently, giving fruitful physical insights that are limitedly achieved with the equation manipulations. Steady-state analyses at any frequency are possible, and equivalent series resistances can also be included in the proposed model. Five selected electrical characteristics, i.e., source-to-load gain, load-independent output voltage/current characteristics, power factor at the source, sign of the source phase angle, and allowances of open/short loads are evaluated for three widely used IPTS topologies. Also, this technique is extended to the mistuned case for verifying the general use of the approach. An experimental prototype of the voltage-source-type inductor-capacitor-inductor secondary-parallel (V-LCL-P) topology was built to demonstrate the proposed approach for both perfectly tuned and mistuned situations at 85 Wand 100 kHz.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据