4.6 Article

Analysis of the Genetic Diversity and Population Structure of Austrian and Belgian Wheat Germplasm within a Regional Context Based on DArT Markers

期刊

GENES
卷 9, 期 1, 页码 -

出版社

MDPI
DOI: 10.3390/genes9010047

关键词

wheat; genetic diversity; population structure; relationships; diversity array technology markers

资金

  1. University of Paris VI in France
  2. Deanship of Scientific Research at King Saud University, Riyadh, Saudi Arabia [RG 1435-011]

向作者/读者索取更多资源

Analysis of crop genetic diversity and structure provides valuable information needed to broaden the narrow genetic base as well as to enhance the breeding and conservation strategies of crops. In this study, 95 Austrian and Belgian wheat cultivars maintained at the Centre for Genetic Resources (CGN) in the Netherlands were characterised using 1052 diversity array technology (DArT) markers to evaluate their genetic diversity, relationships and population structure. The rarefacted allelic richness recorded in the Austrian and Belgian breeding pools (A(25) = 1.396 and 1.341, respectively) indicated that the Austrian germplasm contained a higher genetic diversity than the Belgian pool. The expected heterozygosity (H-E) values of the Austrian and Belgian pools were 0.411 and 0.375, respectively. Moreover, the values of the polymorphic information content (PIC) of the Austrian and Belgian pools were 0.337 and 0.298, respectively. Neighbour-joining tree divided each of the Austrian and Belgian germplasm pools into two genetically distinct groups. The structure analyses of the Austrian and Belgian pools were in a complete concordance with their neighbour-joining trees. Furthermore, the 95 cultivars were compared to 618 wheat genotypes from nine European countries based on a total of 141 common DArT markers in order to place the Austrian and Belgian wheat germplasm in a wider European context. The rarefacted allelic richness (A(10)) varied from 1.224 (Denmark) to 1.397 (Austria). Cluster and principal coordinates (PCoA) analyses divided the wheat genotypes of the nine European countries into two main clusters. The first cluster comprised the Northern and Western European wheat genotypes, whereas the second included the Central European cultivars. The structure analysis of the 618 European wheat genotypes was in a complete concordance with the results of cluster and PCoA analyses. Interestingly, a highly significant difference was recorded between regions (26.53%). In conclusion, this is the first study to reveal the high diversity levels and structure of the uncharacterised Austrian and Belgian wheat germplasm maintained at the CGN as well as place them in a wider European context. The results should help plant breeders to utilise the most promising wheat genotypes of this study in future breeding programmes for enhancing wheat cultivars.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据