4.6 Article

Modeling Arterial Pulse Pressure From Heart Rate During Sympathetic Activation by Progressive Central Hypovolemia

期刊

FRONTIERS IN PHYSIOLOGY
卷 9, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fphys.2018.00353

关键词

heart rate; linear mixed effect models; lower body negative pressure; pulse pressure; sympathetic stimulation

资金

  1. Edwards Lifesciences [2010B0797]

向作者/读者索取更多资源

Heart rate (HR) has an impact on the central blood pressure (BP) wave shape and is related to pulse wave velocity and therefore to timing and duration of systole and diastole. This study tested the hypothesis that in healthy subjects both in rest and during sympathetic stimulation the relation between HR and pulse pressure (PP) is described by a linear effect model. Forty-four healthy volunteers were subjected to sympathetic stimulation by continuous lower body negative pressure (LBNP) until the onset of pre-syncopal symptoms. Changes in PP and HR were tracked non-invasively and modeled by linear mixed effect (LME) models. The dataset was split into two groups: the first was used for creating a model and the second for its evaluation. Models were created on the data obtained during LBNP. Model performance was expressed as absolute median error (1st; 3rd quantiles) and bias with limits of agreement (LOA) between modeled and measured PP. From rest to sympathetic stimulation, mean BP was maintained while HR increased (similar to 30%) and PP decreased gradually (similar to 20%). During baseline, PP could be modeled with an absolute error of 6 (4; 10) mm Hg and geometric mean ratio of the bias was 0.97 (LOA: 0.8-1.1). During LBNP, absolute median model error was 5 (4; 8) mmHg with geometric mean ratio 1.02 (LOA: 0.8-1.3). In conclusion, both during rest and during sustained sympathetic outflow induced by progressive central hypovolemia, a LME model of HR provides for an estimate of PP in healthy young adults.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据