4.7 Article

Identification of Ligularia Herbs Using the Complete Chloroplast Genome as a Super-Barcode

期刊

FRONTIERS IN PHARMACOLOGY
卷 9, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fphar.2018.00695

关键词

Ligularia Cass.; chloroplast genome; identification; super-barcode; Illumina sequencing

资金

  1. CAMS Innovation Fund for Medical Sciences (CIFMS) [2016-I2M-3-016]
  2. Major Scientific and Technological Special Project for Significant New Drugs Creation [2014ZX09304307001]

向作者/读者索取更多资源

More than 30 Ligularia Cass. (Asteraceae) species have long been used in folk medicine in China. Morphological features and common DNA regions are both not ideal to identify Ligularia species. As some Ligularia species contain pyrrolizidine alkaloids, which are hazardous to human and animal health and are involved in metabolic toxification in the liver, it is important to find a better way to distinguish these species. Here, we report complete chloroplast (CP) genomes of six Ligularia species, L. intermedia, L. jaluensis, L. mongolica, L. hodgsonii, L. veitchiana, and L. fischeri, obtained through high-throughput Illumina sequencing technology. These CP genomes showed typical circular tetramerous structure and their sizes range from 151,118 to 151,253 bp. The GC content of each CP genome is 37.5%. Every CP genome contains 134 genes, including 87 protein-coding genes, 37 tRNA genes, eight rRNA genes, and two pseudogenes (ycf1 and rps19). From the mVISTA, there were no potential coding or non-coding regions to distinguish these six Ligularia species, but the maximum likelihood tree of the six Ligularia species and other related species showed that the whole CP genome can be used as a super-barcode to identify these six Ligularia species. This study provides invaluable data for species identification, allowing for future studies on phylogenetic evolution and safe medical applications of Ligularia.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据