4.8 Article

Dielectric Effects at Organic/Inorganic Interfaces in Nanostructured Devices

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 7, 期 22, 页码 11881-11889

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.5b01606

关键词

dielectric; binding energy; curvature; anisotropy; organic; hybrid

资金

  1. Shell Global Solutions International B.V

向作者/读者索取更多资源

Dielectric interfaces are important in organic electronic devices, as they dominate charge generation and recombination dynamics and set the tone for efficiency of the device. In a charge separation scenario across the interface, we calculate the binding energy of a charge carrier for variations in dielectric mismatch (i.e., the ratio of the dielectric constant of materials forming the interface), interface shape and size, and dielectric anisotropy. We find that dielectric mismatch results in binding of the charge carrier to the interface with energies on the order of several kT. For the variation in interface shape and size, epitomized by the device morphology, we show that the assumption of a planar interface overestimates the attractive potential. The change in the interface curvature affects the binding energy of the charge carrier by order of kT. Anisotropy is shown to affect critically the electric field along the principal axis, while the binding energy of the charge is altered by more than 5 kT. We are able to give an upper limit on the change in the binding energy for the variations in the above interfacial factors. These limits can serve as guidelines for optimization, interface engineering, and design of high efficiency organic electronic devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据