4.5 Article

In Situ Growth of Cobalt Nanoparticles Encapsulated Nitrogen-Doped Carbon Nanotubes among Ti3C2Tx (MXene) Matrix for Oxygen Reduction and Evolution

期刊

ADVANCED MATERIALS INTERFACES
卷 5, 期 16, 页码 -

出版社

WILEY
DOI: 10.1002/admi.201800392

关键词

carbon nanotubes; MXene; oxygen reduction and evolution; X-ray absorption spectra

资金

  1. MOST [2017YFA0303500, 2014CB848900]
  2. NSFC [U1532112, 11574280, 11605201, 21706248]
  3. Innovative Research Groups of NSFC [11621063]
  4. CAS Key Research Program of Frontier Sciences [QYZDB-SSW-SLH018]
  5. CAS Interdisciplinary Innovation Team, China Postdoctoral Science Foundation [BH2310000033]
  6. Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology [2016FXCX003]
  7. 111 project [B12015]
  8. Shanghai synchrotron Radiation Facility [14W1]
  9. Beijing Synchrotron Radiation Facility [1W1B]

向作者/读者索取更多资源

MXene with unique layered structure and rich chemical compositions has been extensively investigated for lithium-ion batteries, electrochemical capacitors, and hydrogen storage medium, but less attention has been paid to its electrocatalytic potential might due to nonideal activity. Here, an in situ growth strategy is developed to synthesize a new type of composite with carbon nanotubes (CNTs) supported on the surface of Ti3C2Tx MXene (Co/N-CNTs@Ti3C2Tx) as bifunctional electrocatalyst toward oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). By combining the X-ray photoelectron detection with synchrotron-based soft X-ray spectroscopic characterizations, the strong interfacial coupling and electron transfer are efficiently identified, which can effectively facilitate the bifunctional electrocatalytic performance of Co/N-CNTs@Ti3C2Tx toward ORR and OER in alkaline solution. The present strategy provides a facile route for the design of the hybrids of CNTs and MXene for bifunctional electrocatalysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据