3.9 Review

Wound-induced cell proliferation during animal regeneration

出版社

WILEY
DOI: 10.1002/wdev.321

关键词

cell proliferation; evolution; injury; regeneration

资金

  1. National Science Foundation [1652104]
  2. National Science Foundation
  3. Searle Scholar Program

向作者/读者索取更多资源

Many animal species are capable of replacing missing tissues that are lost upon injury or amputation through the process of regeneration. Although the extent of regeneration is variable across animals, that is, some animals can regenerate any missing cell type whereas some can only regenerate certain organs or tissues, regulated cell proliferation underlies the formation of new tissues in most systems. Notably, many species display an increase in proliferation within hours or days upon wounding. While different cell types proliferate in response to wounding in various animal taxa, comparative molecular data are beginning to point to shared wound-induced mechanisms that regulate cell division during regeneration. Here, we synthesize current insights about early molecular pathways of regeneration from diverse model and emerging systems by considering these species in their evolutionary contexts. Despite the great diversity of mechanisms underlying injury-induced cell proliferation across animals, and sometimes even in the same species, similar pathways for proliferation have been implicated in distantly related species (e.g., small diffusible molecules, signaling from apoptotic cells, growth factor signaling, mTOR and Hippo signaling, and Wnt and Bmp pathways). Studies that explicitly interrogate molecular and cellular regenerative mechanisms in understudied animal phyla will reveal the extent to which early pathways in the process of regeneration are conserved or independently evolved. This article is categorized under: Comparative Development and Evolution > Body Plan Evolution Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration Comparative Development and Evolution > Model Systems

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据