4.1 Article

Fabrication of Microchannels and Evaluation of Guided Vascularization in Biomimetic Hydrogels

期刊

出版社

KOREAN TISSUE ENGINEERING REGENERATIVE MEDICINE SOC
DOI: 10.1007/s13770-018-0130-1

关键词

Vascularization; Microchannel; Biomimetic hydrogel; Hyaluronic acid; Substance P

资金

  1. Ministry of Health and Welfare in the Republic of Korea [HI14C2143]

向作者/读者索取更多资源

The fabrication of microchannels in hydrogel can facilitate the perfusion of nutrients and oxygen, which leads to guidance cues for vasculogenesis. Microchannel patterning in biomimetic hydrogels is a challenging issue for tissue regeneration because of the inherent low formability of hydrogels in a complex configuration. We fabricated microchannels using wire network molding and immobilized the angiogenic factors in the hydrogel and evaluated the vasculogenesis in vitro and in vivo. Microchannels were fabricated in a hyaluronic acid-based biomimetic hydrogel by using wire network molding technology. Substance P was immobilized in acrylated hyaluronic acid for angiogenic cues using Michael type addition reaction. In vitro and in vivo angiogenic activities of hydrogel with microchannels were evaluated. In vitro cell culture experiment shows that cell viability in two experimental biomimetic hydrogels (with microchannels and microchannels + SP) was higher than that of a biomimetic hydrogel without microchannels (bulk group). Evaluation on differentiation of human mesenchymal stem cells (hMSCs) in biomimetic hydrogels with fabricated microchannels shows that the differentiation of hMSC into endothelial cells was significantly increased compared with that of the bulk group. In vivo angiogenesis analysis shows that thin blood vessels of approximately 25-30 mu m in diameter were observed in the microchannel group and microchannel + SP group, whereas not seen in the bulk group. The strategy of fabricating microchannels in a biomimetic hydrogel and simultaneously providing a chemical cue for angiogenesis is a promising formula for large-scale tissue regeneration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据