3.8 Article Book Chapter

Inducible raptor and rictor Knockout Mouse Embryonic Fibroblasts

期刊

MTOR: METHODS AND PROTOCOLS
卷 821, 期 -, 页码 267-278

出版社

HUMANA PRESS INC
DOI: 10.1007/978-1-61779-430-8_16

关键词

mTOR; Raptor; Rictor; Signaling; Mouse embryonic fibroblasts; Knockout; iRapKO; iRicKO

向作者/读者索取更多资源

The mammalian Target of Rapamycin (mTOR.) kinase functions within two structurally and functionally distinct multiprotein complexes termed mTOR complex 1 (mTORC1) and mTORC2. The immunosuppressant and anticancer drug rapamycin is commonly used in basic research as a tool to study mTOR signaling. However, rapamycin inhibits only, and only incompletely, mTORC1, and no mTORC2-specific inhibitor is available. Hence, a full understanding of mTOR signaling in vivo, including the function of both complexes, requires genetic inhibition in addition to pharmacological inhibition. Taking advantage of the Cre/LoxP system, we generated inducible knockout mouse embryonic fibroblasts (MEFs) deficient for either the mTORC1-specific component raptor (iRapKO) or the mTORC2-specific component rictor (iRicKO). Inducibility of the knockout was important because mTOR complex components are essential. Induction of either raptor or rictor knockout eliminated raptor or rictor expression, respectively, and impaired the corresponding mTOR signaling branch. The described knockout MEFs are a valuable tool to study the full function of the two mTOR complexes individually.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据