4.8 Article

Detecting Humans in Dense Crowds Using Locally-Consistent Scale Prior and Global Occlusion Reasoning

出版社

IEEE COMPUTER SOC
DOI: 10.1109/TPAMI.2015.2396051

关键词

Crowd analysis; dense crowds; human detection; scale context; spatial priors; locally-consistent scale prior; combinations-of-parts detection; global occlusion reasoning; deformable parts model; Markov Random Field

资金

  1. U.S. Army Research Laboratory, U.S. Army Research Office [W911NF-09-1-0255]

向作者/读者索取更多资源

Human detection in dense crowds is an important problem, as it is a prerequisite to many other visual tasks, such as tracking, counting, action recognition or anomaly detection in behaviors exhibited by individuals in a dense crowd. This problem is challenging due to the large number of individuals, small apparent size, severe occlusions and perspective distortion. However, crowded scenes also offer contextual constraints that can be used to tackle these challenges. In this paper, we explore context for human detection in dense crowds in the form of a locally-consistent scale prior which captures the similarity in scale in local neighborhoods and its smooth variation over the image. Using the scale and confidence of detections obtained from an underlying human detector, we infer scale and confidence priors using Markov Random Field. In an iterative mechanism, the confidences of detection hypotheses are modified to reflect consistency with the inferred priors, and the priors are updated based on the new detections. The final set of detections obtained are then reasoned for occlusion using Binary Integer Programming where overlaps and relations between parts of individuals are encoded as linear constraints. Both human detection and occlusion reasoning in proposed approach are solved with local neighbor-dependent constraints, thereby respecting the inter-dependence between individuals characteristic to dense crowd analysis. In addition, we propose a mechanism to detect different combinations of body parts without requiring annotations for individual combinations. We performed experiments on a new and extremely challenging dataset of dense crowd images showing marked improvement over the underlying human detector.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据