4.8 Article

Metal oxide nanoparticles induced step-edge nucleation of stable Li metal anode working under an ultrahigh current density of 15 mA cm(-2)

期刊

NANO ENERGY
卷 45, 期 -, 页码 203-209

出版社

ELSEVIER
DOI: 10.1016/j.nanoen.2017.12.055

关键词

Li secondary batteries; Balsa wood; Nanoscale step; Step-edge-guided effect; Ultrahigh current density

资金

  1. National Natural Science Foundation of China [51722210, 51572240, 31500468, 21403196, 51677170]
  2. Natural Science Foundation of Zhejiang Province [LD18E020003, LY16E070004, LY18B030008]
  3. Ford Motor Company

向作者/读者索取更多资源

Lithium (Li) metal has been regarded as promising candidate anode to upgrade the energy density of Li secondary batteries. However, uncontrollable formation of Li dendrite, serious volumetric change, undesirable side reaction and poor mechanical properties of solid electrolyte interphase (SEI) layer impede the commercialization of this technology. By ex-situ observing the initial Li deposition process and conducting electrochemical test, we firstly confirm the prior nucleation behavior of Li metal at the step edge area. We thus employ a balsa wood derived porous carbon matrix as Li host and metal oxide nanoparticles are introduced to increase the nanoscale step amounts for Li nucleation. Hence, the Li nucleation overpotential is reduced and Li can be well accommodated within carbon matrix. Moreover, this step-edge-guided effect could promise the Li striping/plating to happen mainly around the steps area within channels, achieving a dendrite-free anode. Consequently, the modified Li anode is capable of working under an ultrahigh current density of 15 mA cm(-2) with a Coulombic efficiency of similar to 96% and exhibit lower nucleation overpotential, more satisfactory cycling stability. And when in pair with commercial LiCoO2 cathode, it shows better rate performance and higher capacity compared with bare Li foil.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据