4.5 Article

Assessing Synaptic Density in Alzheimer Disease With Synaptic Vesicle Glycoprotein 2A Positron Emission Tomographic Imaging

期刊

JAMA NEUROLOGY
卷 75, 期 10, 页码 1215-1224

出版社

AMER MEDICAL ASSOC
DOI: 10.1001/jamaneurol.2018.1836

关键词

-

资金

  1. Dana Foundation David Mahoney Neuroimaging Grant
  2. Yale Alzheimer's Disease Research Center (via National Institutes of Health) [P50AG047270]
  3. National Institutes of Health [R01AG52560-01A1]
  4. Swedish Research Council

向作者/读者索取更多资源

IMPORTANCE Synaptic loss is well established as the major structural correlate of cognitive impairment in Alzheimer disease (AD). The ability to measure synaptic density in vivo could accelerate the development of disease-modifying treatments for AD. Synaptic vesicle glycoprotein 2A is an essential vesicle membrane protein expressed in virtually all synapses and could serve as a suitable target for synaptic density. OBJECTIVE To compare hippocampal synaptic vesicle glycoprotein 2A (SV2A) binding in participants with AD and cognitively normal participants using positron emission tomographic (PET) imaging. DESIGN. SETTING, AND PARTICIPANTS This cross-sectional study recruited 10 participants with AD and 11 participants who were cognitively normal between November 2015 and June 2017. We hypothesized a reduction in hippocampal SV2A binding in AD, based on the early degeneration of entorhinal cortical cell projections to the hippocampus (via the perforant path) and hippocampal SV2A reductions that had been observed in postmortem studies. Participants underwent high-resolution PET scanning with ((R)-14(3-(11C-methyl-11C)pyridin-4-yl)methyl)-4-(3,4,5-trifluorophenyl)pyrrolidin-2-one), a compound more commonly known as C-11-UCB-J, for SV2A. They also underwent high-resolution PET scanning with carbon 11-labeled Pittsburgh Compound B (C-11-PiB) for beta-amyloid, magnetic resonance imaging, and cognitive and neurologic evaluation. MAIN OUTCOMES AND MEASURES Outcomes were C-UCB-J-specific binding (binding potential [BPND]) via PET imaging in brain regions of interest in participants with AD and participants who were cognitively normal. RESULTS Ten participants with AD (5 male and 5 female; mean [SD] age, 72.7 [6.3] years; 10 [100%) beta-amyloid positive) were compared with 11 participants who were cognitively normal (5 male and 6 female; mean [SD] age, 72.9 [8.7] years; 11 [100%] beta-amyloid negative). Participants with AD spanned the disease stages from amnestic mild cognitive impairment (n = 5) to mild dementia (n = 5). Participants with AD had significant reduction in hippocampal SV2A specific binding (41%) compared with cognitively normal participants, as assessed by C-11-UCB-J-PET BPND (cognitively normal participants: mean [SD] BPND, 1.47 [0.37]; participants with AD: 0.87 [0.50]; P = .005). These reductions remained significant after correction for atrophy (ie, partial volume correction; participants who were cognitively normal: mean [SD], 2.71 [0.46]; participants with AD: 2.15 [0.55]; P = .02). Hippocampal SV2A-specific binding BPND was correlated with a composite episodic memory score in the overall sample (R = 056; P = .01). CONCLUSIONS AND RELEVANCE To our knowledge, this is the first study to investigate synaptic density in vivo in AD using C-11-UCB-J-PET imaging. This approach may provide a direct measure of synaptic density, and it therefore holds promise as an in vivo biomarker for AD and as an outcome measure for trials of disease-modifying therapies, particularly those targeted at the preservation and restoration of synapses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据