4.3 Article

Nonisothermal reservoir/wellbore flow modeling in gas reservoirs

期刊

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jngse.2018.07.001

关键词

Analytical solutions for nonisothermal reservoir flow; J-T effect most dominant in near-wellbore region; Both J-T effect and fluids heat exchange with formation important; Coupled wellbore/reservoir modeling lead to flow assurance

向作者/读者索取更多资源

Most analytical and numerical flow modeling presuppose isothermal flow behavior in the reservoir. However, for high rates and large consequent drawdown gas reservoirs, the nonisothermal behavior becomes the norm due to the Joule-Thomson (J-T) effect. Other factors, such as a fluid's adiabatic expansion (AE), heat convection, and the heat exchange with surrounding formations may also make contributions. Accounting for this nonisothermal flow behavior becomes a necessity for accurately estimating a well's performance due to changes in fluid properties. This paper starts with the general energy balance in the reservoir and presents a semianalytical solution to estimate the nonisothermal, single-phase gas temperature in the reservoir during production. This solution considers the J-T effect, adiabatic expansion effect, transient temperature behavior, heat convection, and heat exchange of fluid with over and under-burden formation. The variations of gas viscosity, density, J-T coefficient as a function of temperature and pressure are taken into consideration by making a small spatial step at each computational node. A field case study validates the time-variant wellbore temperature profiles with the coupled reservoir heat-transfer model. Distributed temperature measurements or DTS during a drillstem test (DST) made this validation feasible. The J-T effect dominates in the near wellbore region due to dramatic pressure change. The J-T induced cooling usually occurs for gas in the reservoir. However, for high-pressure systems, the gas behaves like a liquid and gets heated up. For some intermediate pressure intervals, the gas temperature slightly increases with expansion, reach a plateau, and then gradually decreases as the gas moves toward the wellbore with declining pressure. By coupling the reservoir heat-transfer model with the wellbore heat-transfer model, one can monitor more accurately.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据