4.6 Article

Fabrication of plasmonic TiN nanostructures by nitridation of nanoimprinted TiO2 nanoparticles

期刊

JOURNAL OF MATERIALS CHEMISTRY C
卷 6, 期 6, 页码 1399-1406

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7tc04502f

关键词

-

资金

  1. NSF Center for Hierarchical Manufacturing [CMMI-1025020]
  2. G8 Research Councils Initiative on Multilateral Research through the NSF [CMMI-1258336]

向作者/读者索取更多资源

Titanium nitride (TiN) is a new plasmonic material with advantages due to its greater thermal and chemical stability, compared to traditional metallic materials, i.e. gold and silver. TiN fabrication methods generally require reactive sputtering, which limits and complicates patterning capabilities. In this work, we demonstrate the fabrication of TiN films, as well as nano-patterned surfaces and three-dimensional (3D) structures by nitridation of crystalline titanium dioxide (TiO2) nanoparticle-based structures. TiO2 films are created by spin coating nanoparticle-based solutions, and TiO2 patterns are fabricated directly via solvent-assisted soft nanoimprint lithography. TiO2 films and structures were annealed in air and then reacted with ammonia gas at 1000 degrees C for 0, 2, 4, or 6 hours. SEM analysis shows that patterned TiO2 surfaces and 3D structures retain their structural integrity after treatment, allowing for a convenient method of fabricating patterned TiN nano-patterned surfaces and structures. Treated samples demonstrate the crystalline transition from tetragonal to cubic, which is consistent with the transition from anatase TiO2 to TiN. Additionally, using spectroscopic ellipsometry, we observe a change in the real permittivity from positive to negative. For 0 and 6 hour treatments, the real permittivity changes from 3.1 to -9.6 (at 1000 nm). TiN has potential use for many plasmonic and metamaterial applications. In this work, we demonstrate the excitation of surface plasmon polaritons (SPPs) via grating coupling using 1 mm-period TiN line gratings.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据