4.6 Article

MOF-derived porous N-Co3O4@N-C nanododecahedra wrapped with reduced graphene oxide as a high capacity cathode for lithium-sulfur batteries

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 6, 期 6, 页码 2797-2807

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7ta10272k

关键词

-

资金

  1. Australia Research Council, Commonwealth of Australia
  2. Australian Renewable Energy Agency (ARENA)
  3. University of Technology Sydney (UTS) [DECRA DE170101009]
  4. ARC Discovery Project [DP170100436]
  5. ARENA [2014/RND106]
  6. UTS Chancellor's Postdoctoral Research Fellowship project [PRO16-1893]
  7. UTS Early Career Researcher Grants [ECRGS PRO16-1304]
  8. Chinese Scholarship Council (CSC) [201307090011]

向作者/读者索取更多资源

The lithium-sulfur (Li-S) battery has been regarded as a highly promising rechargeable energy-storage system due to its high energy density of 2567 W h kg-1. However, moderating the dissolution of lithium polysulfides (LiPSs) and enhancing the conductivity of the sulfur cathode are the main limitations for its successful application. Herein, we demonstrate an approach to simultaneously tackle these two barriers by designing a porous N-Co3O4@N-C nanododecahedral composite. This composite was derived from ZIF-67 via a facile pyrolysis method, which realizes the effective doping of nitrogen into both Co3O4 and the carbon framework, simultaneously achieving a well-defined porous structure. After wrapping with reduced graphene oxide (rGO), this porous N-Co3O4@N-C/rGO cathode supported a high sulfur loading (5.89 mg cm(-2)) and exhibited excellent stability (611 mA h g(-1) at 2C after 1000 cycles). Furthermore, ex situ Raman spectroscopy, ex situ X-ray photoelectron spectroscopy, UV-vis absorption spectroscopy and first-principles calculations confirm that the N-Co3O4@N-C/rGO nanododecahedra effectively bind LiPSs in the electrode over multiple cycles. This proved that the cobalt oxides in the porous N-Co3O4@N-C nanododecahedra have strong affinity for binding LiPSs. The simultaneous doping of nitrogen both into the cobalt oxides and carbon framework not only strengthened the binding energy for LiPSs absorption, but also improved the overall conductivity of the nanododecahedra. Moreover, the interconnected porous structure contributes to the electron transfer and alleviates the volume changes of active materials during cycling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据