4.6 Article

Laser- irradiation induced synthesis of spongy AuAgPt alloy nanospheres with high- index facets, rich grain boundaries and subtle lattice distortion for enhanced

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 6, 期 28, 页码 13735-13742

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8ta04087g

关键词

-

资金

  1. National Key Research and Development Program of China [2017YFA0207101]
  2. Natural Science Foundation of China [51771188, 51571189]
  3. Major Program of Development Foundation of Hefei Center for Physical Science and Technology [2017FXZY002]
  4. Cross-disciplinary Collaborative Teams Program in CAS
  5. CAS/SAFEA International Partnership Program for Creative Research Teams

向作者/读者索取更多资源

We develop a facile laser-irradiation induced alloying and subsequent chemical etching method to prepare spongy AuAgPt alloy nanospheres (spongy AuAgPt NSs) with high-index facets, rich grain boundaries and subtle lattice distortion as highly active electrooxidation catalysts. The key to preparing such spongy AuAgPt NSs for their excellent electrocatalytic activity is the alloying process induced by laser irradiation, forming rich grain boundaries and subtle lattice distortion due to the quick fusion and quenching process, which is completely different from traditional thermal annealing alloying. After chemical dealloying, the nanopores were formed and a large amount of high-index facets were successfully introduced into the spongy AuAgPt NSs. The spongy AuAgPt NSs exhibited superior methanol oxidation reaction (MOR) activity (1.62 A mg(Pt)(-1)), which was 5.1 times higher than that of Pt black (0.32 A mg(Pt)(-1)), and they also showed outstanding stability for the MOR after long-term cycles. The enhanced catalytic activity could be attributed to the abundant high-index facets, grain boundaries and subtle lattice distortion of spongy AuAgPt NSs formed in this laser-irradiation induced alloying and subsequent chemical etching process. The present work provides a new efficient strategy for the rational design of 3D spongy electrocatalysts with both high activity and improved durability for promising applications in electrocatalysis, biosensing, energy conversion, etc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据