4.6 Article

Tuning the dimensions and structures of nitrogen-doped carbon nanomaterials derived from sacrificial g-C3N4/metal-organic frameworks for enhanced electrocatalytic oxygen reduction

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 6, 期 14, 页码 5752-5761

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8ta00439k

关键词

-

资金

  1. National Natural Science Foundation of China [21722704]
  2. Science and Technology Commission of Shanghai Municipality [16DZ1204300, 15DZ2281400, 16JC1401700]

向作者/读者索取更多资源

Here we demonstrate a facile strategy for tuning the dimensions and structures of nitrogen-doped carbon nanomaterials via regulating the ratio of Co/Zn in zeolitic imidazolate framework (ZIF) arrays in situ grown on g-C3N4 nanosheets, followed by a pyrolysis process. One-dimensional nitrogen-doped bamboo-like carbon nanotube encapsulated Co nanoparticle (Co/N-BCNTs), two-dimensional nitrogen-doped carbon nanosheet (N-CNS) and three-dimensional nitrogen-doped carbon nanotube framework encapsulated Co nanoparticle (Co/N-CNTFs) electrocatalysts are successfully fabricated from Zn/Co-ZIF@g-C3N4, ZIF-8@g-C3N4 (Co free) and ZIF-67@g-C3N4 (Zn free), respectively. The resulting Co/N-BCNTs electrocatalyst exhibits a better oxygen reduction reaction (ORR) activity than the other two catalysts, with a half-wave potential of 0.83 V (versus the reversible hydrogen electrode) in alkaline solutions, which is superior to that of a commercial Pt/C catalyst. More importantly, the Co/N-BCNTs show much higher stability and better methanol-tolerance than the Pt/C catalyst in a 0.1 M KOH solution. It has been demonstrated that the enhanced catalytic performance of Co/N-BCNTs is attributed to their suitable surface area, well-dispersed N dopants, and Co encapsulated inside carbon nanotubes. The presented strategy offers new prospects in developing highly active electrocatalysts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据