4.6 Article

Synergism of molybdenum nitride and palladium for high-efficiency formic acid electrooxidation

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 6, 期 17, 页码 7623-7630

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8ta02488j

关键词

-

资金

  1. National Natural Science Foundation of China [21631004, 21601055, 21571054, 21401048]
  2. Natural Science Foundation of Heilongjiang Province [B2017008]
  3. University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province [UNPYSCT-2016076, UNPYSCT-2017123]
  4. Heilongjiang University Excellent Youth Foundation

向作者/读者索取更多资源

The direct formic acid fuel cell (DFAFC) has received increasing attention in the sustainable and clean energy field. However, the high cost, poor durability, and shortage of palladium (Pd) based catalysts for the formic acid oxidation reaction (FAOR) restrict the large-scale application of DFAFC. Herein, molybdenum nitride/reduced graphene oxide (Mo2N/rGO) was designed as an effective cocatalyst of Pd for FAOR based on an assembly-immobilization method. It is shown that the small-sized Mo2N is well dispersed on rGO with high density, which is favorable for the post-loading deposition of Pd onto the rGO to form a strongly coupled Pd-Mo2N structure. The strong interaction between Pd and Mo2N, verified by a series of characterizations, is helpful for promoting the performance of Pd. Electrochemical tests indicate that the Pd-Mo2N/rGO catalyst shows superior activity to other Pd based catalysts, with a current density of 532.7 mA mgPd(-1), which is 1.7 and 2.2 times greater than those of Pd/reduced graphene oxide (Pd/rGO) and Pd/Vulcan XC-72 (Pd/VC), respectively. In addition, Pd-Mo2N/rGO exhibits enhanced CO tolerance and good stability. The good performance is mainly ascribed to the intimate contact between Mo2N and Pd which gives enhanced synergistic action. The excellent performance of Pd-Mo2N/rGO makes it a potential electrocatalyst for DFAFC applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据