4.6 Article

Tricomponent brookite/anatase TiO2/g-C3N4 heterojunction in mesoporous hollow microspheres for enhanced visible-light photocatalysis

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 6, 期 16, 页码 7236-7245

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8ta00386f

关键词

-

资金

  1. Melbourne International Research Scholarship (MIRS)
  2. Australian Research Council Future Fellowship [FT0990583]

向作者/读者索取更多资源

The three major polymorphs of TiO2, anatase, rutile, and brookite, are widely utilised to form heterojunction semiconductors for superior photocatalytic performance due to their unique optical properties and tunable morphologies. Mesoporous brookite/anatase TiO2/g-C3N4 hollow microspheres were prepared from pre-made, amorphous TiO2 microspheres via a facile nanocoating procedure and showed mixed phases of brookite (48%), anatase (44%), and rutile (8%). The mesoporous hollow microspheres exhibited a unique shell morphology of packed TiO2/g-C3N4 nanosheets, porosity with pore volume of 0.20 cm(3) g(-1) and surface area of 37.1 m(2) g(-1). Compared with mesoporous g-C3N4, the composite hollow microspheres coated with 10 wt% g-C3N4 were 5-fold more active in degrading phenol under visible light irradiation. In contrast with mesoporous pristine anatase or rutile TiO2/g-C3N4 composites, the photocatalytic activity was improved for the multiphase TiO2/g-C3N4 material due to the more negative conduction band, which benefitted electron transfer. A mechanism for the enhanced photocatalytic behaviour was proposed for the mesoporous brookite/anatase/rutile TiO2/g-C3N4 hollow microspheres, showing that the multicomponent heterojunction could enhance the photocatalytic properties in the visible range.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据