4.6 Article

Integrated perovskite solar capacitors with high energy conversion efficiency and fast photo-charging rate

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 6, 期 5, 页码 2047-2052

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7ta09099d

关键词

-

资金

  1. National Key Research and Development Program of China [2017YFA0208200, 2016YFB0700600]
  2. National Key Basic Research Program [2015CB659300]
  3. Natural Science Foundation of Jiangsu Province for Young Scholars [BK20160647, BK20150583]
  4. Fundamental Research Funds for the Central Universities [020514380107]
  5. Priority Academic Program Development of Jiangsu Higher Education Institutions

向作者/读者索取更多资源

Integrating energy harvesting devices with energy storage systems can realize a temporal buffer for local power generation and power consumption. In this manner, self-charging energy devices consisting of photovoltaic cells and energy storage units can serve as sustainable and portable distributed power sources that can concurrently generate and store electric energy without the need for external charging circuits. Herein, an integrated perovskite solar capacitor (IPSC) was realized by combining a perovskite solar cell (PSC) and a supercapacitor in a single device. Taking advantages of nanocarbon electrodes, the IPSCs possess a simple configuration, compact structure, and well-matched operation voltage. The IPSCs could be rapidly charged by different modes (including the photo-charging mode, galvanostatic-charging mode, and photoassisted-galvanostatic-charging mode), and showed a remarkable overall photo-chemical-electricity energy conversion efficiency as high as 7.1% in the photo-charging mode. Moreover, the IPSCs could work efficiently under weak light illumination. This study provides new insights for the design of novel integrative energy devices that combine the functions of solar power harvesting and electrochemical energy storage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据