4.4 Article

Interplay between the holographic QCD phase diagram and entanglement entropy

期刊

JOURNAL OF HIGH ENERGY PHYSICS
卷 -, 期 7, 页码 -

出版社

SPRINGER
DOI: 10.1007/JHEP07(2018)120

关键词

Gauge-gravity correspondence; Phase Diagram of QCD; Confinement; Holography and quark-gluon plasmas

资金

  1. PDM grant of KU Leuven
  2. Department of Science and Technology, Government of India [IFA17-PH207]

向作者/读者索取更多资源

In earlier work, we introduced a dynamical Einstein-Maxwell-dilaton model which mimics essential features of QCD (thermodynamics) below and above deconfinement. Although there are some subtle differences in the confining regime of our model as compared to the standard results, we do have a temperature dependent dual metric below T-c as well, allowing for a richer and more realistic holographic modeling of the QCD phase structure. We now discuss how these features leave their imprints on the associated entanglement entropy when a strip region is introduced in the various phases. We uncover an even so rich structure in the entanglement entropy, consistent with the thermodynamical transitions, while again uncloaking some subtleties. Thanks to the temperature dependent confining geometry, we can present an original quantitative prediction for the phase diagram in terms of temperature and strip length, reporting a critical end point at the deconfinement temperature. We also generalize to the case with chemical potential.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据