4.4 Article

Casimir recursion relations for general conformal blocks

期刊

JOURNAL OF HIGH ENERGY PHYSICS
卷 -, 期 2, 页码 -

出版社

SPRINGER
DOI: 10.1007/JHEP02(2018)011

关键词

Conformal and W Symmetry; Conformal Field Theory

资金

  1. DOE [DE-SC0011632]

向作者/读者索取更多资源

We study the structure of series expansions of general spinning conformal blocks. We find that the terms in these expansions are naturally expressed by means of special functions related to matrix elements of Spin(d) representations in Gelfand-Tsetlin basis, of which the Gegenbauer polynomials are a special case. We study the properties of these functions and explain how they can be computed in practice. We show how the Casimir equation in Dolan-Osborn coordinates leads to a simple one-step recursion relation for the coefficients of the series expansion of general spinning conformal block. The form of this recursion relation is determined by 6j symbols of Spin(d - 1). In particular, it can be written down in closed form in d = 3, d = 4, for seed blocks in general dimensions, or in any other situation when the required 6j symbols can be computed. We work out several explicit examples and briefly discuss how our recursion relation can be used for efficient numerical computation of general conformal blocks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据