4.6 Article

Gas-phase electrocatalytic conversion of CO2 to chemicals on sputtered Cu and Cu-C catalysts electrodes

期刊

JOURNAL OF ENERGY CHEMISTRY
卷 31, 期 -, 页码 46-53

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jechem.2018.05.005

关键词

CO2 valorization; Electro-reduction; Cu catalyst; PEM; Selectivity; Methanol production

资金

  1. Spanish Ministry of Economy, Industry, and Competitiveness [CTQ2016-75491-R, RYC-2015-19230]
  2. Abengoa Research

向作者/读者索取更多资源

A novel gas-phase electrocatalytic cell containing a low-temperature proton exchange membrane (PEM) was developed to electrochemically convert CO2 into organic compounds. Two different Cu-based cathode catalysts (Cu and Cu-C) were prepared by physical vapor deposition method (sputtering) and subsequently employed for the gas-phase electroreduction of CO2 at different temperatures (70-90 degrees C). The prepared electrodes Cu and Cu-C were characterized by X-ray diffraction (XRD), X-ray photoemission spectroscopy (XPS) and scanning electron microscopy (SEM). As revealed, Cu is partially oxidized on the surface of the samples and the Cu and Cu-C cathodic catalysts were comprised of a porous, continuous, and homogeneous film with nanocrystalline Cu with a grain size of 16 and 8 nm, respectively. The influence of the applied current and temperature on the electro-catalytic activity and selectivity of these materials was investigated. Among the two investigated electrodes, the pure Cu catalyst film showed the highest CO2 specific electrocatalytic reduction rates and higher selectivity to methanol formation compared to the Cu-C electrode, which was attributed to the higher particle size of the former and lower CuO/Cu ratio. The obtained results show potential interest for the possible use of electrical renewable energy for the transformation of CO2 into valuable products using low metal loading Cu based electrodes (0.5 mg Cu cm(-2)) prepared by sputtering. (C) 2018 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据