4.7 Article

Game-Theoretic Topology Control for Opportunistic Localization in Sparse Underwater Sensor Networks

期刊

IEEE TRANSACTIONS ON MOBILE COMPUTING
卷 14, 期 5, 页码 990-1003

出版社

IEEE COMPUTER SOC
DOI: 10.1109/TMC.2014.2338293

关键词

Opportunistic localization; game theory; topology control; sparse UWSNs; oligopoly

资金

  1. Department of Electronics and Information Technology, Government of India [13(10)/2009-CC-BT]

向作者/读者索取更多资源

In this paper, we propose a localization scheme named Opportunistic Localization by Topology Control (OLTC), specifically for sparse Underwater Sensor Networks (UWSNs). In a UWSN, an unlocalized sensor node finds its location by utilizing the spatio-temporal relation with the reference nodes. Generally, UWSNs are sparsely deployed because of the high implementation cost, and unfortunately, the network topology experiences partitioning due to the effect of passive node mobility. Consequently, most of the underwater sensor nodes lack the required number of reference nodes for localization in underwater environments. The existing literature is deficient in addressing the problem of node localization in the above mentioned scenario. Antagonistically, however, we promote that even in such sparse UWSN context, it is possible to localize the nodes by exploiting their available opportunities. We formulate a game-theoretic model based on the Single-Leader-Multi-Follower Stackelberg game for topology control of the unlocalized and localized nodes. We also prove that both the players choose strategies to reach a socially optimal Stackelberg-Nash-Cournot Equilibrium. NS-3 based simulation results indicate that the localization coverage of the network increases upto 1.5 times compared to the existing state-of-the-art. The energy-efficiency of OLTC has also been established.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据