4.7 Article

Mapping rubber tree growth in mainland Southeast Asia using time-series MODIS 250 m NDVI and statistical data

期刊

APPLIED GEOGRAPHY
卷 32, 期 2, 页码 420-432

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apgeog.2011.06.018

关键词

MODIS; NDVI; Rubber tree mapping; Mahalanobis typicality; Southeast Asia

向作者/读者索取更多资源

Expanding global and regional markets are driving the conversion of traditional subsistence agricultural and occupied non-agricultural lands to commercial-agricultural purposes. In many parts of mainland Southeast Asia rubber plantations are expanding rapidly into areas where the crop was not historically found. Over the last several decades more than one million hectares of land have been converted to rubber trees in areas of China, Laos, Thailand, Vietnam, Cambodia and Myanmar, where rubber trees were not traditionally grown. This expansion of rubber plantations has replaced ecologically important secondary forests and traditionally managed swidden fields and influenced local energy, water and carbon fluxes. Accurate and up-to-date monitoring and mapping of rubber tree growth is critical to understanding the implications of this changing ecosystem. Discriminating rubber trees from second-growth forests and fallow land has proven challenging. Previous experiments using machine-learning approaches with hard classifications on remotely sensed data, when faced with the realities of a heterogeneous plant-life mixture and high intra-class variance, have tended to overestimate the areas of rubber tree growth. Our current research sought to: 1) to investigate the potential of using a Mahalanobis typicality model to deal with mixed pixels; and 2) to explore the potential for combining MOderate Resolution Imaging Spectroradiometer (MODIS) imagery with sub-national statistical data on rubber tree areas to map the distribution of rubber tree growth across this mainland Southeast Asia landscape. Our study used time-series MODIS Terra 16-day composite 250 m Normalized Difference Vegetation Index (NDVI) products (MOD13Q1) acquired between March 2009 and May 2010. We used the Mahalanobis typicality method to identify pixels where rubber tree growth had the highest probability of occurring and sub-national statistical data on rubber tree growth to quantify the number of pixels of rubber tree growth mapped per administrative unit. We used Relative Operating Characteristic (ROC) and error matrix analysis, respectively, to assess the viability of Mahalanobis typicalities and to validate classification accuracy. High ROC values, over 0.8, were achieved with the Mahalanobis typicality images of both mature and young rubber trees. The proposed method greatly reduced the commission errors for the two types of rubber tree growth to 1.9% and 2.8%, respectively (corresponding to user's accuracies of 98.1% and 97.2%, respectively). Results indicate that integrating Mahalanobis typicalities with MODIS time-series NDVI data and sub-national statistics can successfully overcome the earlier overestimation problem. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据