4.5 Article

Numerical Study of the Failure Response and Fracture Propagation for Rock Specimens with Preexisting Flaws under Compression

期刊

出版社

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)GM.1943-5622.0001172

关键词

Elastic damage constitutive model; Weibull distribution; Fracture propagation and coalescence; Rock failure; Abaqus; UMAT

资金

  1. ARC Future Fellowship [FT140100019]
  2. ARC [DP140100509]

向作者/读者索取更多资源

This study incorporated an elastic brittle damage constitutive model into a program for modeling and analysis through a user subroutine interface to define a material's mechanical behavior and considered nonlinear geometric effects. The Weibull distribution function was adopted to consider the heterogeneity-related uncertainty of the strength and stiffness. The 2D models used were discretized using plain strain reduced integration elements with the option of element removal after being fully damaged. We verified the accuracy of the user subroutine code by reproducing the observed failure behavior of an intact sandstone specimen with using previously suggested material parameters. The reliability of the numerical model was supported by an agreement between pre-existing experimental results and the numerical simulation results for specimens containing a single fissure with different inclination angles. Two parametric studies were conducted on the failure behavior of a specimen with a single fissure to investigate the effect of (1) the heterogeneity level and (2) the confining pressure. Stiffness and strength were shown to decrease with increases in the level of heterogeneity. Tensile cracks that appeared in the more homogeneous models were replaced by scattered damaged elements with increasing heterogeneity. Increasing the confining pressure increased the load capacity of the specimen, regardless of the inclination of the fissure angle. This trend was related to the amount of damage occurring before reaching the peak load. The maximum load was typically lower when the route length of the cracks formed before the peak load was larger. To investigate fracture coalescence behavior, specimens with two parallel fissures were modelled for four different ligament angles. The numerical simulations agree with the available experimental results, indicating that coalescence changed from shear to a tensile mode as the ligament angle increased. (C) 2018 American Society of Civil Engineers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据