4.6 Article

Screening Phosphorylation Site Mutations in Yeast Acetyl-CoA Carboxylase Using Malonyl-CoA Sensor to Improve Malonyl-CoA-Derived Product

期刊

FRONTIERS IN MICROBIOLOGY
卷 9, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fmicb.2018.00047

关键词

malonyl-CoA sensor; phosphorylation site mutations; acetyl-CoA carboxylase; 3-hydroxypropionic acid; Saccharomyces cerevisiae

资金

  1. National Natural Science Foundation of China [31770101, 31470163, 31711530155]
  2. Key R&D Program of Shandong Province [2017GSF21110, 2015GSF121015]

向作者/读者索取更多资源

Malonyl-coenzyme A (malonyl-CoA) is a critical precursor for the biosynthesis of a variety of biochemicals. It is synthesized by the catalysis of acetyl-CoA carboxylase (Acc1p), which was demonstrated to be deactivated by the phosphorylation of Snf1 protein kinase in yeast. In this study, we designed a synthetic malonyl-CoA biosensor and used it to screen phosphorylation site mutations of Acc1p in Saccharomyces cerevisiae. Thirteen phosphorylation sites were mutated, and a combination of three site mutations in Acc1p, S686A, S659A, and S1157A, was found to increase malonyl-CoA availability. ACC1(S686AS659AS1157A) expression also improved the production of 3-hydroxypropionic acid, a malonyl-CoA-derived chemical, compared to both wild type and the previously reported ACC1(S659AS1157A) mutation. This mutation will also be beneficial for other malonyl-CoA-derived products.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据