4.7 Article

Simultaneous Phase Unwrapping and Removal of Chemical Shift (SPURS) Using Graph Cuts: Application in Quantitative Susceptibility Mapping

期刊

IEEE TRANSACTIONS ON MEDICAL IMAGING
卷 34, 期 2, 页码 531-540

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TMI.2014.2361764

关键词

Field map estimation; magnetic resonance imaging (MRI); quantitative susceptibility mapping; water/fat separation

资金

  1. National Natural Science Foundation of China [61271388, 61327902]
  2. Beijing Natural Science Foundation [4122040]
  3. Tsinghua University [2012Z01011]
  4. Specialized Research Fund for the Doctoral Program of Higher Education
  5. U.S. National Institute of Health [R43EB015293, R01EB013443, R01CA178007]

向作者/读者索取更多资源

Quantitative susceptibility mapping (QSM) is a magnetic resonance imaging technique that reveals tissue magnetic susceptibility. It relies on having a high quality field map, typically acquired with a relatively long echo spacing and long final TE. Applications of QSM outside the brain require the removal of fat contributions to the total signal phase. However, current water/fat separation methods applied on typical data acquired for QSM suffer from three issues: inadequacy when using large echo spacing, over-smoothing of the field maps and high computational cost. In this paper, the general phase wrap and chemical shift problem is formulated using a single species fitting and is solved using graph cuts with conditional jump moves. This method is referred as simultaneous phase unwrapping and removal of chemical shift (SPURS). The result from SPURS is then used as the initial guess for a voxel-wise iterative decomposition of water and fat with echo asymmetric and least-squares estimation (IDEAL). The estimated 3-D field maps are used to compute QSM in body regions outside of the brain, such as the liver. Experimental results show substantial improvements in field map estimation, water/fat separation and reconstructed QSM compared to two existing water/fat separation methods on 1.5T and 3T magnetic resonance human data with long echo spacing and rapid field map variation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据