4.8 Article

RNA-dependent RNA targeting by CRISPR-Cas9

期刊

ELIFE
卷 7, 期 -, 页码 -

出版社

ELIFE SCIENCES PUBLICATIONS LTD
DOI: 10.7554/eLife.32724

关键词

-

类别

资金

  1. National Science Foundation [MCB-1244557]
  2. Howard Hughes Medical Institute
  3. German Academic Exchange Program
  4. Laboratory Directed Research and Development [DE-NA0003525]
  5. Paul Allen Frontiers Science Program
  6. NATIONAL CENTER FOR RESEARCH RESOURCES [S10RR029668, S10RR027303] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Double-stranded DNA (dsDNA) binding and cleavage by Cas9 is a hallmark of type II CRISPR-Cas bacterial adaptive immunity. All known Cas9 enzymes are thought to recognize DNA exclusively as a natural substrate, providing protection against DNA phage and plasmids. Here, we show that Cas9 enzymes from both subtypes II-A and II-C can recognize and cleave single-stranded RNA (ssRNA) by an RNA-guided mechanism that is independent of a protospacer-adjacent motif (PAM) sequence in the target RNA. RNA-guided RNA cleavage is programmable and site-specific, and we find that this activity can be exploited to reduce infection by single-stranded RNA phage in vivo. We also demonstrate that Cas9 can direct PAM-independent repression of gene expression in bacteria. These results indicate that a subset of Cas9 enzymes have the ability to act on both DNA and RNA target sequences, and suggest the potential for use in programmable RNA targeting applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据