4.4 Article

Pharmacokinetics, Distribution, and Metabolism of [14C]Sunitinib in Rats, Monkeys, and Humans

期刊

DRUG METABOLISM AND DISPOSITION
卷 40, 期 3, 页码 539-555

出版社

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/dmd.111.042853

关键词

-

向作者/读者索取更多资源

Sunitinib is an oral multitargeted tyrosine kinase inhibitor approved for the treatment of advanced renal cell carcinoma, imatinib-refractory gastrointestinal stromal tumor, and advanced pancreatic neuroendocrine tumors. The current studies were conducted to characterize the pharmacokinetics, distribution, and metabolism of sunitinib after intravenous and/or oral administrations of [C-14] sunitinib in rats (5 mg/kg i.v., 15 mg/kg p.o.), monkeys (6 mg/kg p.o.), and humans (50 mg p.o.). After oral administration, plasma concentration of sunitinib and total radioactivity peaked from 3 to 8 h. Plasma terminal elimination half-lives of sunitinib were 8 h in rats, 17 h in monkeys, and 51 h in humans. The majority of radioactivity was excreted to the feces with a smaller fraction of radioactivity excreted to urine in all three species. The bioavailability in female rats was close to 100%, suggesting complete absorption of sunitinib. Whole-body autoradioluminography suggested radioactivity was distributed throughout rat tissues, with the majority of radioactivity cleared within 72 h. Radioactivity was eliminated more slowly from pigmented tissues. Sunitinib was extensively metabolized in all species. Many metabolites were detected both in urine and fecal extracts. The main metabolic pathways were N-de-ethylation and hydroxylation of indolylidene/dimethylpyrrole. N-Oxidation/hydroxylation/desaturation/deamination of N,N'-diethylamine and oxidative defluorination were the minor metabolic pathways. Des-ethyl metabolite M1 was the major circulating metabolite in all three species.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据