4.6 Review

Progress of CRISPR-Cas Based Genome Editing in Photosynthetic Microbes

期刊

BIOTECHNOLOGY JOURNAL
卷 13, 期 9, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/biot.201700591

关键词

Cas12a (Cpf1); Cas9; CRISPR-Cas; cyanobacteria; genome editing; microalgae

资金

  1. project titled Microalgae As a Green source from Nutritional Ingredients for Food/Feed and Ingredients for Cosmetics by cost effective New Technologies [MAGNIFICENT] - Bio-based Industries Joint Technology Initiative under European Commission [745754]

向作者/读者索取更多资源

The carbon footprint caused by unsustainable development and its environmental and economic impact has become a major concern in the past few decades. Photosynthetic microbes such as microalgae and cyanobacteria are capable of accumulating value-added compounds from carbon dioxide, and have been regarded as environmentally friendly alternatives to reduce the usage of fossil fuels, thereby contributing to reducing the carbon footprint. This light-driven generation of green chemicals and biofuels has triggered the research for metabolic engineering of these photosynthetic microbes. CRISPR-Cas systems are successfully implemented across a wide range of prokaryotic and eukaryotic species for efficient genome editing. However, the inception of this genome editing tool in microalgal and cyanobacterial species took off rather slowly due to various complications. In this review, we elaborate on the established CRISPR-Cas based genome editing in various microalgal and cyanobacterial species. The complications associated with CRISPR-Cas based genome editing in these species are addressed along with possible strategies to overcome these issues. It is anticipated that in the near future this will result in improving and expanding the microalgal and cyanobacterial genome engineering toolbox.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据