4.1 Article

Optical CO2 Gas Sensing Based on TiO2 Thin Films of Diverse Thickness Decorated with Silver Nanoparticles

期刊

出版社

HINDAWI LTD
DOI: 10.1155/2018/2780203

关键词

-

资金

  1. Higher Education Commission (HEC) of Pakistan
  2. Centre of Excellence in Solid State Physics, University of the Punjab, QAC, Lahore, Pakistan [54590]

向作者/读者索取更多资源

The fabrication, characterization, and CO2 gas detection performance of single component-based and hetero-nanostructure-based optical gas sensors are reported in the present work. Single component-based structures include (i) TiO2 thin films with varied film thickness (37.45 nm, 51.92 nm, and 99.55 nm) fabricated via the RF sputtering system for different deposition times and (ii) silver nanoparticles (AgNPs) deposited on the glass substrate by the wet chemical method. Hetero-nanostructures were achieved by decorating the AgNPs on the predeposited TiO2 thin films. The structural, morphological, and optical characteristics of prepared samples were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and ellipsometry, respectively. XRD analysis of AgNPs confirmed the crystalline nature of prepared particles with average crystallite size of 21 nm, however, in the case of TiO(2 )films XRD results suggested amorphous structure of all as-deposited films. size 21 nm. The SEM micrographs confirmed the deposition of AgNPs on the TiO2 thin films. With increasing sputtering time, TiO(2 )films were found to be denser and more compact, indicating a reduced porosity and higher film thickness. CO2 gas-sensing properties were investigated by measuring the optical transmission spectra in alone air and in CO(2 )gaseous atmosphere at room temperature. It was observed that neither TiO2 thin films even with higher thickness nor alone AgNPs could demonstrate any substantial gas-sensing activity. Nevertheless, TiO2/AgNP hetero-nanostructured substrates exhibited excellent CO2 gas-sensing performance as indicated by a huge change in the transmission spectra. The enhanced sensing efficiency of TiO2/AgNP nanostructures owing to synergistic effects suggests a promising role of our manufactured sensors in practical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据