4.6 Article

Metal-Free and Selective Oxidation of Furfural to Furoic Acid with an N-Heterocyclic Carbene Catalyst

期刊

ACS SUSTAINABLE CHEMISTRY & ENGINEERING
卷 6, 期 3, 页码 3434-3442

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acssuschemeng.7b03681

关键词

N-Heterocyclic carbene; Furfural; Furoin; Furoic acid; Aerobic oxidation

资金

  1. Grants-in-Aid for Scientific Research [15H05556] Funding Source: KAKEN

向作者/读者索取更多资源

Aerobic oxidation of biomass-derived furfural to furoic acid was studied with an N-heterocyclic carbene as a homogeneous catalyst. Carbene species generated in situ on 1,3-bis(2,4,6-trimethylphenyl) imidazolium chloride with a strong organic base (1,8-diazabicyclo[5.4.0]undec-7-ene) was highly active and selective for the formation of furoic acid in dimethyl sulfoxide at 40 degrees C. This reaction initiates the formation of a Breslow intermediate between an N-heterocyclic carbene and a furfural molecule and the subsequent activation of molecular O-2. While the active carbene catalyst promoted furfural dimerization to afford furoin as a side reaction, furoin was decomposed into the Breslow intermediate and furfural through a reverse reaction, which were then converted quantitatively to furoic acid. Kinetic studies revealed that the apparent activation energy for this furfural oxidation was only 20 kJ mol(-1), which is significantly lower than that with a supported Au catalyst (30.4 kJ mol(-1)). The N-heterocyclic carbene catalyst can oxidize various furan-based aldehydes with high selectivity; however, the electron withdrawing group bonded to the furan ring has a negative effect on the reaction rate. Furfural can also be oxidized selectively to furoic acid, even in the presence of byproducts that are formed by acid-catalyzed dehydration of xylose with Amberlyst-70. As a result, a sequential reaction system based on initial dehydration and subsequent aerobic oxidation was developed for the production of furoic acid from xylose, without the need for furfural purification, using Amberlyst-70 (a solid acid) and an N-heterocyclic carbene catalyst.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据