4.6 Article

Upscaling the Zeolite-Anammox Process: Treatment of Secondary Effluent

期刊

WATER
卷 10, 期 3, 页码 -

出版社

MDPI
DOI: 10.3390/w10030236

关键词

wastewater treatment; anaerobic bacteria; nitrification; anammox

资金

  1. Union (USD)
  2. Contra Costa Central Sanitation Districts (CCCSD)

向作者/读者索取更多资源

Water quality in San Francisco Bay is reportedly adversely affected by nitrogen loading from the wastewater treatment plants (WWTPs) discharging around the periphery of the Bay. Here, we consider a zeolite-anammox system to remove ammonia and nitrate from secondary-treated wastewater at ambient temperatures (12-30 degrees C). Until now, use of anammox bacteria has been largely limited to treatment of high-ammonia content wastewater at warm temperatures (30-40 degrees C). Specifically, we investigate upscaling the zeolite-anammox system to nitrogen removal from relatively low-ammonia content (similar to 35 NH3-N mg/L) effluent using gravity-fed 0.7 m wide and 0.17 m deep linear-channel reactors within pilot plants located at either the WWTP or some eight kilometers away. Following establishment, we monitored ammonia and nitrate concentrations along one reactor bi-weekly and only inflow-outflow concentrations at the other for more than a year. We found nearly complete ammonia removal within the first 22 m of reactor consistent with the theoretical 89% nitrogen removal capacity associated with the nitrogen-conversion stoichiometry of anammox bacteria. We also determined degradation parameters of a constant 1.41 mg NH3-N/L per hour in the first 15 m, or 20.7 g NH3-N/m(3)/day for overall reactor volume. At the higher flowrate of the second reactor, we achieved a removal rate of 42 g NH3-N/m(3)/day. Overall, the linear-channel reactors operated with minimal maintenance, no additional energy inputs (e.g., for aeration) and consistently achieved NH3-N discharge concentrations similar to 1 mg/L despite fluctuating temperatures and WWTP effluent concentrations of 20-75 mg NH3-N/L.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据