4.6 Article

Calibration Parameter Selection and Watershed Hydrology Model Evaluation in Time and Frequency Domains

期刊

WATER
卷 10, 期 6, 页码 -

出版社

MDPI
DOI: 10.3390/w10060710

关键词

calibration; time domain; frequency domain; wavelet coherence; magnitude squared coherence; NSE; sensitivity analysis

资金

  1. National Science Foundation (NSF) [ENG 1209445]
  2. US Department of Agriculture NRCS [69-3A75-14-269]
  3. Utah State University Agricultural Experiment Station [9104]

向作者/读者索取更多资源

Watershed scale models simulating hydrological and water quality processes have advanced rapidly in sophistication, process representation, flexibility in model structure, and input data. With calibration being an inevitable step prior to any model application, there is need for a simple procedure to assess whether or not a parameter should be adjusted for calibration. We provide a rationale for a hierarchical selection of parameters to adjust during calibration and recommend that modelers progress from parameters that are most uncertain to parameters that are least uncertain, namely starting with pure calibration parameters, followed by derived parameters, and finally measured parameters. We show that different information contained in time and frequency domains can provide useful insight regarding the selection of parameters to adjust in calibration. For example, wavelet coherence analysis shows time periods and scales where a particular parameter is sensitive. The second component of the paper discusses model performance evaluation measures. Given the importance of these models to support decision-making for a wide range of environmental issues, the hydrology community is compelled to improve the metrics used to evaluate model performance. More targeted and comprehensive metrics will facilitate better and more efficient calibration and will help demonstrate that the model is useful for the intended purpose. Here, we introduce a suite of new tools for model evaluation, packaged as an open-source Hydrologic Model Evaluation (HydroME) Toolbox. We apply these tools in the calibration and evaluation of Soil and Water Assessment Tool (SWAT) models of two watersheds, the Le Sueur River Basin (2880 km(2)) and Root River Basin (4300 km(2)) in southern Minnesota, USA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据