4.7 Article

Sparse Bayesian Learning Based Three-Dimensional Imaging Algorithm for Off-Grid Air Targets in MIMO Radar Array

期刊

REMOTE SENSING
卷 10, 期 3, 页码 -

出版社

MDPI
DOI: 10.3390/rs10030369

关键词

three-dimensional imaging; off-grid model; sparse Bayesian learning; variational expectation maximization; Bayesian Cramer-Rao bound

向作者/读者索取更多资源

In recent years, the development of compressed sensing (CS) and array signal processing provides us with a broader perspective of 3D imaging. The CS-based imaging algorithms have a better performance than traditional methods. In addition, the sparse array can overcome the limitation of aperture size and number of antennas. Since the signal to be reconstructed is sparse for air targets, many CS-based imaging algorithms using a sparse array are proposed. However, most of those algorithms assume that the scatterers are exactly located at the pre-discretized grids, which will not hold in real scene. Aiming at finding an accurate solution to off-grid target imaging, we propose an off-grid 3D imaging method based on improved sparse Bayesian learning (SBL). Besides, the Bayesian Cramer-Rao Bound (BCRB) for off-grid bias estimator is provided. Different from previous algorithms, the proposed algorithm adopts a three-stage hierarchical sparse prior to introduce more degrees of freedom. Then variational expectation maximization method is applied to solve the sparse recovery problem through iteration, during each iteration joint sparsity is used to improve efficiency. Experimental results not only validate that the proposed method outperforms the existing off-grid imaging methods in terms of accuracy and resolution, but have compared the root mean square error with corresponding BCRB, proving effectiveness of the proposed method.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据