4.7 Article

The importance of parameter resampling for soil moisture data assimilation into hydrologic models using the particle filter

期刊

HYDROLOGY AND EARTH SYSTEM SCIENCES
卷 16, 期 2, 页码 375-390

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/hess-16-375-2012

关键词

-

资金

  1. Belgian Science Policy
  2. Foundation of Scientific Research of the Flemish Community (FWO-Vlaanderen)

向作者/读者索取更多资源

The Sequential Importance Sampling with Resampling (SISR) particle filter and the SISR with parameter resampling particle filter (SISR-PR) are evaluated for their performance in soil moisture assimilation and the consequent effect on baseflow generation. With respect to the resulting soil moisture time series, both filters perform appropriately. However, the SISR filter has a negative effect on the baseflow due to inconsistency between the parameter values and the states after the assimilation. In order to overcome this inconsistency, parameter resampling is applied along with the SISR filter, to obtain consistent parameter values with the analyzed soil moisture state. Extreme parameter replication, which could lead to a particle collapse, is avoided by the perturbation of the parameters with white noise. Both the modeled soil moisture and baseflow are improved if the complementary parameter resampling is applied. The SISR filter with parameter resampling offers an efficient way to deal with biased observations. The robustness of the methodology is evaluated for 3 model parameter sets and 3 assimilation frequencies. Overall, the results in this paper indicate that the particle filter is a promising tool for hydrologic modeling purposes, but that an additional parameter resampling may be necessary to consistently update all state variables and fluxes within the model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据