4.7 Article

Discovery of Path Nearby Clusters in Spatial Networks

期刊

出版社

IEEE COMPUTER SOC
DOI: 10.1109/TKDE.2014.2382583

关键词

Path nearby cluster; efficiency; optimization; spatial networks; spatiotemporal databases

资金

  1. National Natural Science Foundation of China (NSFC) [61402532]
  2. Science Foundation of China University of Petroleum-Beijing [2462013YJRC031]
  3. Excellent Talents of Beijing Program [2013D009051000003]
  4. Obel Family Foundation

向作者/读者索取更多资源

The discovery of regions of interest in large cities is an important challenge. We propose and investigate a novel query called the path nearby cluster (PNC) query that finds regions of potential interest (e.g., sightseeing places and commercial districts) with respect to a user-specified travel route. Given a set of spatial objects O (e.g., POIs, geo-tagged photos, or geo-tagged tweets) and a query route q, if a cluster c has high spatial-object density and is spatially close to q, it is returned by the query (a cluster is a circular region defined by a center and a radius). This query aims to bring important benefits to users in popular applications such as trip planning and location recommendation. Efficient computation of the PNC query faces two challenges: how to prune the search space during query processing, and how to identify clusters with high density effectively. To address these challenges, a novel collective search algorithm is developed. Conceptually, the search process is conducted in the spatial and density domains concurrently. In the spatial domain, network expansion is adopted, and a set of vertices are selected from the query route as expansion centers. In the density domain, clusters are sorted according to their density distributions and they are scanned from the maximum to the minimum. A pair of upper and lower bounds are defined to prune the search space in the two domains globally. The performance of the PNC query is studied in extensive experiments based on real and synthetic spatial data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据