4.5 Article

Selective, Direct Activation of High-Conductance, Calcium-Activated Potassium Channels Causes Smooth Muscle Relaxation

期刊

MOLECULAR PHARMACOLOGY
卷 81, 期 4, 页码 567-577

出版社

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/mol.111.075853

关键词

-

资金

  1. Conselho Nacional de Desenvolvimento Cientifico e Tecnologico
  2. Fundacao de Amparo a Pesquisa do Estado do Rio de Janeiro

向作者/读者索取更多资源

High-conductance calcium-activated potassium (Maxi-K) channels are present in smooth muscle where they regulate tone. Activation of Maxi-K channels causes smooth muscle hyperpolarization and shortening of action-potential duration, which would limit calcium entry through voltage-dependent calcium channels leading to relaxation. Although Maxi-K channels appear to indirectly mediate the relaxant effects of a number of agents, activators that bind directly to the channel with appropriate potency and pharmacological properties useful for proof-of-concept studies are not available. Most agents identified to date display significant polypharmacy that severely compromises interpretation of experimental data. In the present study, a high-throughput, functional, cell-based assay for identifying Maxi-K channel agonists was established and used to screen a large sample collection (>1.6 million compounds). On the basis of potency and selectivity, a family of tetrahydroquinolines was further characterized. Medicinal chemistry efforts afforded identification of compound X, from which its two enantiomers, Y and Z, were resolved. In in vitro assays, Z is more potent than Y as a channel activator. The same profile is observed in tissues where the ability of either agent to relax precontracted smooth muscles, via a potassium channel-dependent mechanism, is demonstrated. These data, taken together, suggest that direct activation of Maxi-K channels represents a mechanism to be explored for the potential treatment of a number of diseases associated with smooth muscle hyperexcitability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据