4.5 Article

Atomic-scale finite element modelling of mechanical behaviour of graphene nanoribbons

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s10999-018-9403-z

关键词

Atomistic simulation; Elastic modulus; Graphene; Nanoribbons; Tensile strength

资金

  1. Sao Paulo Research Foundation (Fapesp) [2012/17948-4, 2013/23085-1, 2015/00209-2, 2013/08293-7]
  2. CAPES
  3. CNPQ
  4. Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [13/23085-1, 12/17948-4] Funding Source: FAPESP

向作者/读者索取更多资源

Experimental characterization of Graphene NanoRibbons (GNRs) is still an expensive task and computational simulations are therefore seen as a practical option to study the properties and mechanical response of GNRs. Design of GNR elements in various nanotechnology devices can be approached through molecular dynamics simulations. This study demonstrates that the atomic-scale finite element method (AFEM) based on the second generation REBO potential is an efficient and accurate alternative to the molecular dynamics simulation of GNRs. Special atomic finite elements are proposed to model graphene edges. Extensive comparisons are presented with MD solutions to establish the accuracy of AFEM. It is also shown that the Tersoff potential is not accurate for GNR modeling. The study demonstrates the influence of chirality and size on design parameters such as tensile strength and stiffness. Graphene is stronger and stiffer in the zigzag direction compared to the armchair direction. Armchair GNRs shows a minor dependence of tensile strength and elastic modulus on size whereas in the case of zigzag GNRs both modulus and strength show a significant size dependency. The size-dependency trend noted in the present study is different from the previously reported MD solutions for GNRs but qualitatively agrees with experimental results. Based on the present study, AFEM can be considered a highly efficient computational tool for analysis and design of GNRs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据