4.4 Article

Investigations of tangential ultrasonic vibration turning of Ti6Al4V using finite element method

期刊

INTERNATIONAL JOURNAL OF MATERIAL FORMING
卷 12, 期 2, 页码 257-267

出版社

SPRINGER FRANCE
DOI: 10.1007/s12289-018-1402-y

关键词

Ultrasonic vibration machining; Finite element simulation; Arbitrary Lagrange-Eulerian; Force

资金

  1. Shanghai University of Engineering Science

向作者/读者索取更多资源

Ultrasonic vibration (UV) machining is a process in which micro-scale high frequency vibration is added on the cutting tool to improve machining performance. Its principal is to make the interaction between tool and workpiece a periodically separation, and the direction of the friction between tool and chip is changed in each cycle of the ultrasonic vibration. In this paper, the mechanism of ultrasonic vibration cutting, the effects of ultrasonic vibration on the forces, temperature, stress and chip shape during orthogonal cutting of Ti6Al4V material are studied with finite element method(FEM). The conventional and ultrasonic vibration cutting are simulated using Arbitrary Lagrange-Eulerian(ALE) approach in ABAQUS/Explicit. Taken forces as index, the effects of cutting speed (40 m/min, 50 m/min, 60 m/min ), feed rate (0.08 mm/r, 0.12 mm/r, 0.16 mm/r ) and back engagements (0.1 mm, 0.3 mm, 0.5 mm ) on metal cutting are investigated separately by single factor test. The simulations are validated by the experimental findings and analytical data. The results show that the cutting forces, stress and temperature of ultrasonic vibration cutting are much smaller than conventional cutting.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据