4.7 Article

Insights Into the Robustness of Minimum Error Entropy Estimation

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TNNLS.2016.2636160

关键词

Estimation; minimum error entropy (MEE); robustness

资金

  1. 973 Program [2015CB351703]
  2. National NSF of China [61372152]

向作者/读者索取更多资源

The minimum error entropy (MEE) is an important and highly effective optimization criterion in information theoretic learning (ITL). For regression problems, MEE aims at minimizing the entropy of the prediction error such that the estimated model preserves the information of the data generating system as much as possible. In many real world applications, the MEE estimator can outperform significantly the well-known minimum mean square error (MMSE) estimator and show strong robustness to noises especially when data are contaminated by non-Gaussian (multimodal, heavy tailed, discrete valued, and so on) noises. In this brief, we present some theoretical results on the robustness of MEE. For a one-parameter linear errors-in-variables (EIV) model and under some conditions, we derive a region that contains the MEE solution, which suggests that the MEE estimate can be very close to the true value of the unknown parameter even in presence of arbitrarily large outliers in both input and output variables. Theoretical prediction is verified by an illustrative example.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据