4.6 Article

Neuronal NAD(P)H Oxidases Contribute to ROS Production and Mediate RGC Death after Ischemia

期刊

INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE
卷 53, 期 6, 页码 2823-2830

出版社

ASSOC RESEARCH VISION OPHTHALMOLOGY INC
DOI: 10.1167/iovs.12-9526

关键词

-

资金

  1. National Eye Institute/National Institutes of Health (NIH) [R21 EY020613, R01 EY022348]
  2. Research to Prevent Blindness, NIH Center [P30EY014801]
  3. Department of Defense (DOD) [W81XWH-09-1-0675]

向作者/读者索取更多资源

PURPOSE. To study the role of neuronal nicotinamide adenine dinucleotide phosphate [NAD(P)H] oxidase-dependent reactive oxygen species (ROS) production in retinal ganglion cell (RGC) death after ischemia. METHODS. Ischemic injury was induced by unilateral elevation of intraocular pressure via direct corneal cannulation. For in vitro experiments, RGCs isolated by immunopanning from retinas were exposed to oxygen and glucose deprivation (OGD). The expression levels of NAD(P)H oxidase subunits were evaluated by quantitative PCR, immunocytochemistry, and immunohistochemistry. The level of ROS generated was assayed by dihydroethidium. The NAD(P)H oxidase inhibitors were then tested to determine if inhibition of NAD(P)H oxidase altered the production of ROS within the RGCs and promoted cell survival. RESULTS. It was reported that RGCs express catalytic Nox1, Nox2, Nox4, Duox1, as well as regulatory Ncf1/p47phox, Ncf2/p67phox, Cyba/p22phox, Noxo1, and Noxa1 subunits of NAD(P)H oxidases under normal conditions and after ischemia. However, whereas RGCs express only low levels of catalytic Nox2, Nox4, and Duox1, and regulatory Ncf1/p47, Ncf2/p67 subunits, they exhibit significantly higher levels of catalytic subunit Nox1 and the subunits required for optimal activity of Nox1. It was observed that the nonselective NAD(P)H oxidase inhibitors VAS-2870, AEBSF, and the Nox1 NAD(P)H oxidase-specific inhibitor ML-090 decreased the ROS burst stimulated by OGD, which was associated with a decreased level of RGC death. CONCLUSIONS. The findings suggest that NAD(P)H oxidase activity in RGCs renders them vulnerable to ischemic death. Importantly, high levels of Nox1 NAD(P)H oxidase subunits in RGCs suggest that this enzyme could be a major source of ROS in RGCs produced by NAD(P) H oxidases. (Invest Ophthalmol Vis Sci. 2012; 53: 2823-2830) DOI: 10.1167/iovs.12-9526

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据