4.5 Article

Landscape of Actionable Genetic Alterations Profiled from 1,071 Tumor Samples in Korean Cancer Patients

期刊

CANCER RESEARCH AND TREATMENT
卷 51, 期 1, 页码 211-222

出版社

KOREAN CANCER ASSOCIATION
DOI: 10.4143/crt.2018.132

关键词

Actionable genetic alteration; Precision medicine; Next generation sequencing; Targeted panel sequencing; Cancer genomics

类别

资金

  1. Korean Health Technology RAMP
  2. D Project through the Korea Health Industry Development Institute - Ministry of Health AMP
  3. Welfare, Republic of Korea [HI13C2096, HI14C0072]
  4. Ministry of Food and Drug Safety, Republic of Korea [16173-MFDS004]

向作者/读者索取更多资源

Purpose With the emergence of next-generation sequencing (NGS) technology, profiling a wide range of genomic alterations has become a possibility resulting in improved implementation of targeted cancer therapy. In Asian populations, the prevalence and spectrum of clinically actionable genetic alterations has not yet been determined because of a lack of studies examining high-throughput cancer genomic data. Materials and Methods To address this issue, 1,071 tumor samples were collected from five major cancer institutes in Korea and analyzed using targeted NGS at a centralized laboratory. Samples were either fresh frozen or formalin-fixed, paraffin embedded (FFPE) and the quality and yield of extracted genomic DNA was assessed. In order to estimate the effect of sample condition on the quality of sequencing results, tissue preparation method, specimen type (resected or biopsied) and tissue storage time were compared. Results We detected 7,360 non-synonymous point mutations, 1,164 small insertions and deletions, 3,173 copy number alterations, and 462 structural variants. Fifty-four percent of tumors had one or more clinically relevant genetic mutation. The distribution of actionable variants was variable among different genes. Fresh frozen tissues, surgically resected specimens, and recently obtained specimens generated superior sequencing results over FFPE tissues, biopsied specimens, and tissues with long storage duration. Conclusion In order to overcome, challenges involved in bringing NGS testing into routine clinical use, a centralized laboratory model was designed that could improve the NGS workflows, provide appropriate turnaround times and control costs with goal of enabling precision medicine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据