4.7 Article

Design of Experiments Methodology to Build a Multifactorial Statistical Model Describing the Metabolic Interactions of Alcohol Dehydrogenase Isozymes in the Ethanol Biosynthetic Pathway of the Yeast Saccharomyces cerevisiae

期刊

ACS SYNTHETIC BIOLOGY
卷 7, 期 7, 页码 1676-1684

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acssynbio.8b00112

关键词

Saccharomyces cerevisiae; ethanol biosynthesis; Design of Experiments (DOE); metabolic engineering; alcohol dehydrogenase

资金

  1. Shell Biodomain

向作者/读者索取更多资源

Multifactorial approaches can quickly and efficiently model complex, interacting natural or engineered biological systems in a way that traditional one factor-at-a-time experimentation can fail to do. We applied a Design of Experiments (DOE) approach to model ethanol biosynthesis in yeast, which is well-understood and genetically tractable, yet complex. Six alcohol dehydrogenase (ADH) isozymes catalyze ethanol synthesis, differing in their transcriptional and post-translational regulation, subcellular localization, and enzyme kinetics. We generated a combinatorial library of all ADH gene deletions and measured the impact of gene deletion(s) and environmental context on ethanol production of a subset of this library. The data were used to build a statistical model that described known behaviors of ADH isozymes and identified novel interactions. Importantly, the model described features of ADH metabolic behavior without explicit a priori knowledge. The method is therefore highly suited to understanding and optimizing metabolic pathways in less well-understood systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据