4.5 Article

Adjustable Polyurethane Foam as Filling Material for a Novel Spondyloplasty: Biomechanics and Biocompatibility

期刊

WORLD NEUROSURGERY
卷 112, 期 -, 页码 E848-E858

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.wneu.2018.01.174

关键词

Biokinemetrie; PMMA; Polyurethane foam; Vertebral compression fracture; Vertebroplasty

资金

  1. Slovak Research and Development Agency [APVV-15-0356, APVV-14-0294]

向作者/读者索取更多资源

OBJECTIVE: To investigate the biomechanics and biocompatibility of polyurethane (PU) foam with adjustable stiffness as a filling material for a novel spondyloplasty that is designed to reduce the risk of postoperative adjacent level fractures. METHODS: Sixty individual porcine lumbar vertebrae were randomly split into 4 groups: A, B, C, and D. Group A served as unmodified vertebral body controls. Groups B, C, and D consisted of hollowed vertebral bodies. Vertebrae of groups C and D were filled with adjustable PU foams of different stiffness. The compressive strength and stiffness of vertebrae from groups A-D were recorded and analyzed. 3T3 mouse fibroblasts were cultured with preformed PU foams for 4 days to test biocompatibility. RESULTS: The strength and stiffness of the hollowed groups were lower than in group A. However, the differences were not statistically significant between group A and group C (P > 0.05), and were obviously different be- tween group A and group B or group D < 0.01 and <0.05, respectively). Moreover, the strength and stiffness after filling foams in group C or group D were significantly greater than in group B (P < 0.01 and <0.05, respectively). Live/dead staining of 3T3 cells confirmed the biocompatibility of the PU foam. CONCLUSIONS: The new PU foam shows adaptability regarding its stiffness and excellent cytocompatibility in vitro. The results support the clinical translation of the new PU foams as augmentation material in the development of a novel spondyloplasty.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据