4.7 Article

Experimental evidence that thermal selection shapes mitochondrial genome evolution

期刊

SCIENTIFIC REPORTS
卷 8, 期 -, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-018-27805-3

关键词

-

资金

  1. Physics and Biology Unit of the Okinawa Institute of Science and Technology Graduate University
  2. JSPS [P12751 + 24 2751]
  3. Hermon-Slade Foundation [HSF 15/2]
  4. Australian Research Council [FT160100022, DP170100165]
  5. [Go8EURFA11 2011003556]

向作者/读者索取更多资源

Mitochondria are essential organelles, found within eukaryotic cells, which contain their own DNA. Mitochondrial DNA (mtDNA) has traditionally been used in population genetic and biogeographic studies as a maternally-inherited and evolutionary-neutral genetic marker. However, it is now clear that polymorphisms within the mtDNA sequence are routinely non-neutral, and furthermore several studies have suggested that such mtDNA polymorphisms are also sensitive to thermal selection. These observations led to the formulation of the mitochondrial climatic adaptation hypothesis, for which all published evidence to date is correlational. Here, we use laboratory-based experimental evolution in the fruit fly, Drosophila melanogaster, to test whether thermal selection can shift population frequencies of two mtDNA haplogroups whose natural frequencies exhibit clinal associations with latitude along the Australian east-coast. We present experimental evidence that the thermal regime in which the laboratory populations were maintained drove changes in haplogroup frequencies across generations. Our results strengthen the emerging view that intra-specific mtDNA variants are sensitive to selection, and suggest spatial distributions of mtDNA variants in natural populations of metazoans might reflect adaptation to climatic environments rather than within-population coalescence and diffusion of selectively-neutral haplotypes across populations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据