4.8 Article

Switching Technique for Inductive Power Transfer at High-Q Regimes

期刊

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS
卷 62, 期 4, 页码 2164-2173

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TIE.2014.2361806

关键词

Inductive power transfer (IPT); maximum power delivered to load; power transfer efficiency; switch-mode operation

向作者/读者索取更多资源

Inductive power transfer employing high quality factor (high-Q) resonators is an effective method to extend the transfer range of the wireless power transfer system. However, the overenhanced loading effect on the transmitter side exacerbates the degradation of power transfer capability and the phenomenon of frequency splitting at a short coupling distance. Currently, range adaptation techniques compensate and maximize the power transfer capability at the cost of power transfer efficiency, which leads to the power plateau and power transfer efficiency bound of 50% for voltage-fed inductive power transfer (IPT) system. In this paper, a switch-mode operation is proposed to improve the transfer characteristics of the high-Q voltage-fed IPT system at a short distance. By employing the resonators as an energy storage element rather than a loosely coupled transformer, the proposed method takes advantage of the transient process of energy exchange between resonators, which decouples the load with the TX circuit and maximizes the transferred power without the need of reducing efficiency of the system. The proposed operation is demonstrated by the experiment. The results show that the switch-mode operation significantly enhanced the power transfer capability of the system used in the experiment. Meanwhile, the power transfer efficiency and the transferred power of the experiment circuit are independent with each other; both of them increase with coupling monotonously.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据