4.7 Article

Skeletal myosin binding protein-C isoforms regulate thin filament activity in a Ca2+-dependent manner

期刊

SCIENTIFIC REPORTS
卷 8, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-018-21053-1

关键词

-

资金

  1. National Institutes of Health [HL105826, HL114749, HL130356, HL62426, HL124041, AR067279, HL059408, HL126909]
  2. American Heart Association Midwest Affiliate Research Programs
  3. Cardiovascular Genome-Phenome Award [15CVGPSD27020012]
  4. Catalyst Award [17CCRG33671128]
  5. National Heart Foundation of Australia [CEA 100 354, PB S12 6939]

向作者/读者索取更多资源

Muscle contraction, which is initiated by Ca2+, results in precise sliding of myosin-based thick and actin-based thin filament contractile proteins. The interactions between myosin and actin are finely tuned by three isoforms of myosin binding protein-C (MyBP-C): slow-skeletal, fast-skeletal, and cardiac (ssMyBP-C, fsMyBP-C and cMyBP-C, respectively), each with distinct N-terminal regulatory regions. The skeletal MyBP-C isoforms are conditionally coexpressed in cardiac muscle, but little is known about their function. Therefore, to characterize the functional differences and regulatory mechanisms among these three isoforms, we expressed recombinant N-terminal fragments and examined their effect on contractile properties in biophysical assays. Addition of the fragments to in vitro motility assays demonstrated that ssMyBP-C and cMyBP-C activate thin filament sliding at low Ca2+. Corresponding 3D electron microscopy reconstructions of native thin filaments suggest that graded shifts of tropomyosin on actin are responsible for this activation (cardiac > slow-skeletal > fast-skeletal). Conversely, at higher Ca2+, addition of fsMyBP-C and cMyBP-C fragments reduced sliding velocities in the in vitro motility assays and increased force production in cardiac muscle fibers. We conclude that due to the high frequency of Ca2+ cycling in cardiac muscle, cardiac MyBP-C may play dual roles at both low and high Ca2+. However, skeletal MyBP-C isoforms may be tuned to meet the needs of specific skeletal muscles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据